

Addressing challenges of declining North Slope production

Northern Energy Science and Technology Fair August 15, 2012

Outline

- TAPS overview
 - Alyeska at a glance
 - Pipeline facts
 - Pipeline throughput
- Declining flow
- TAPS historical throughput
- January temperature profiles
- Low flow Impact Study
 - Water & ice
 - Wax deposition & precipitation
 - Frost heave
- Low flow mitigative measures
- Questions?

Alyeska at a glance

- Alyeska Pipeline Service Company was incorporated August 14, 1970 to design, build, operate and maintain the pipeline, pump stations and the Valdez Marine Terminal.
- Alyeska personnel and contractors continually monitor and operate the Trans Alaska Pipeline System – or TAPS – so that oil flows safely, efficiently and in an environmentally sound manner.
- On average, there are about 2,000 TAPS employees a combination of Alyeska employees and various contractors.
- Alyeska is owned by five oil pipeline companies.

TAPS Map

Pipeline facts

- Some 420 of the 800-mile-long pipeline is elevated on 78,000 supports, called "vertical support members." It is designed this way because the ground is permafrost
- The pipeline crosses the Brooks, Alaska and Chugach mountain ranges
- TAPS' highest point is 4,739 feet at Atigun Pass in the Brooks Range
- The pipe has an outside diameter of 48 inches and approximately half-inch-thick walls

Pipeline throughput

- TAPS carries approximately 11 percent of the nation's domestic oil production
- Current daily throughput is approximately 560,000 barrels per day (July 2012)
- Since startup in June 1977, TAPS has:
 - transported more than 16 billion barrels of crude oil
 - loaded more than 20,000 tankers at the Valdez Marine Terminal

Declining flows

- TAPS is facing significant technical challenges related to lower flow rates:
 - Slower velocities and longer transit times
 - At 600,000 barrels/day, >15 days PS1 to Valdez
 - At 300,000 barrels/day, >30 days PS1 to Valdez
 - Lower temperatures
 - Less turbulence with lower flow rates
 - Water and crude oil solids settle out of the crude oil

TAPS Historical Throughput

January Temperature Profiles

Pipeline Milepost

Low Flow Impact Study

- Study initiated in 2008 and completed 2011
- Study components
 - Literature review
 - Testing
 - Model validation and development
 - Analysis
 - Mitigation evaluation

Low flow: water & ice

- Water separation and accumulation at low points during flowing conditions (water begins to hold-up just below 500,000 BPD)
- Ice forms under flowing conditions
- Water accumulates and freezes at low points during extended winter shutdowns
- Ice formed from TAPS water has variable strength, with some ice comparable to sea ice

Ice formation in flow loop

Low flow: wax deposition & precipitation

Low flow: wax issues

- Inability to obtain continuous data from instrumented pigs due to increased wax deposition
 - Instrumented pig failure in 2006 due to wax accumulation
- Internal corrosion issues
 - Corrosion can potentially begin under wax deposits and in routinely wetted areas
- Problems with wax solids clogging mainline pump and metering strainers

Wax received by scraper pig

Low flow: frost heaves

- Pipe can accommodate 12 inches of frost heave:
 - Thirty-three belowground sections totaling 9 miles identified with high potential for frost heave issues
 - The frost heave issue initiates at approximately 350,000 BPD when the average annual crude temperature is below 32 °F
 - Without mitigation, frost heave is predicted to reach 12 inches at approximately 300,000 BPD

Low flow mitigation

- Ice formation in flowing conditions
 - Crude oil heating (station recycle, fired heaters, waste heat recovery)
- Ice formation in shutdown conditions
 - Enhanced insulation
- Water holdup
 - Regular pigging
 - Water specification and enforcement measure change
 - Regular injection of corrosion inhibitors and biocides
- Wax deposition and precipitation
 - Regular pigging
 - Additional pig trap(s)
 - Solids handling facilities
 - Regular injection of wax crystal modifiers
- Frost heave
 - Crude oil heating

Questions?

